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Research Vision

The goal of my research is to improve the interaction between intelligent systems (e.g.,
robots, semi-autonomous vehicles, and digital assistants) and users through
human-in-the-loop optimal control. I believe that Contextual and Embodied Artificial
Intelligence (AI) causes the boundaries between the physical and digital worlds to merge,
necessitating technological advances that prioritize human-centric control of intelligent
systems. My research aims to enable a future where humans can interact with intelligent
systems instinctively, unobtrusively, and with minimal effort required to master.

My work focuses on developing computational approaches to advance this
human-machine collaboration. Vital for this collaboration is the control strategy of the
intelligent system: given a context and user behavior how should the machine act for
collaboration towards a, sometimes unknown, goal? Crucially, the payoff might happen in
the future (e.g., breaking in a vehicle now; might prefer an accident in the future), hence
the system should take the optimal action given the expected reward over an (in)finite
horizon given a goal and constraints. Prediction based optimal control is not trivial, due to
uncertainty of the world. In collaborative tasks, this becomes even more challenging; as
the system will need to predict the human future states. I believe that the integration of
cognitively-plausible computational models of human behavior in optimal control
strategies is the way forward.

Research Contributions

Traditionally humans used interfaces to directly manipulate variables, like using a hammer
to drive a nail. More recently, this approach has evolved: we interact with interfaces that
communicate with intelligent agents to manipulate variables for us, such as controlling a
Nest thermostat to adjust the temperature. With the rise of Contextual and Embodied AlI,
the user interacts through the variable with the agent. For instance, steering a
semi-autonomous vehicle. In this case, the vehicle is both the interface (the user uses it to
communicate with the autonomous agent) and the variable (both the user and agent update
its acceleration). Thereby, making the variable both the target of manipulation and the
interface for interaction. This convergence of variables and interfaces introduces
challenges in rethinking interface design and balancing user autonomy with system
automation.

My research follows these two connected threads of work: 1) the design, creation and
evaluation of joint interfaces, interfaces on which both a human and artificial agent jointly
interact; and 2) the exploration of cooperative control strategies that combine user
models with optimal control strategies.


mailto:thomas.langerak@inf.ethz.ch
https://thomaslangerak.nl

Research Statement | Thomas Langerak

Interface + Variable = Joint Interface

Traditionally, an interface is defined as a
shared boundary for information
exchange between separate computer
system components. A joint interface
retains these properties but also serves as a
variable that the user seeks to control
(right), such as a semi-autonomous vehicle. I
am not arguing that all variables are
interfaces or vice versa. I am saying that
these historically separate elements have
moved closer over time, due to contextual Al,
and that there is now a partial overlap.

Joint Interface

I have explored this overlap in three projects; in which I specifically focused on physical
input and output haptic interfaces for Virtual and Augmented Reality. In all my projects an
intelligent agent and a user act (using force) on the same interface (a pen). Tool-based
haptic in- and output interfaces form an interesting scenario of a joint interface. On one
hand, the user and agent both act on the tool/interface (through force) where the variable
is the tool’s spatial position. On the other hand, the tool position is the proxy for a second
task-specific variable (e.g., controlling a car in a game). Using the haptic interface we can
explore the nuances of the joint interface.

Omni [Langerak2020a] (above) is a haptic device that is used as a controller for Virtual
Reality applications, such as gaming, design, and haptic rendering of deformable materials.
A symmetric electromagnet is used in combination with a dipole magnet model and a
control law to deliver dynamically adjustable forces onto a hand-held tool. Here the haptic
feedback is elicited on the tool, while the user interacts with the tool. Omni showed that
physical joint interfaces provide more intuitive and accurate user inputs.

[Langerak2020b] extends Omni to include sensing of the tool position via the magnetic
field. Where Omni required external tracking devices; the spatial haptic capabilities of
Omni 2.0 are enabled by a novel gradient-based method to reconstruct the 3D position of
the permanent magnet in midair using the measurements from eight off-the-shelf hall
sensors that are integrated into the base. In [Langerak2022] we extend this to a deep
learning method that improves tracking latency, frequency, and accuracy. Omni 2.0 teaches
us that by incorporating advanced sensing technologies directly within our tools, we
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can significantly reduce reliance on external devices, paving the way for more
seamless and integrated human-computer interactions.

Cooperative Control Strategies

A major implication of the contextualization and embodiment of AI for interfaces and
variables: rather than users having full ownership over the interface, ownership is now
shared. For instance, until recently, users would write code on their own. However,
nowadays, both the user and CoPilot can write code together, simultaneously. This raises
questions about who can edit and manipulate the code and to what extent, at any given
time. We need to balance user autonomy with system automation.

One of the core limitations of omni is that the magnetic
field rapidly declines over distance, thereby limiting the
working area. In [Langerak2020c], we overcame this by
mounting a cylindrical electromagnet on a biaxial linear
stage (left). However, this approach complicates the
control dynamics. If the magnetic actuator is too close
and active, the feedback perceived by the user is too
strong, causing the user to lose any sense of autonomy.
However, if the magnet is too far away, no haptic
feedback is perceived, rendering the system useless. In
our work, we demonstrate that by incorporating user and predictive models of world
state transitions into a control strategy, we can guide the user while still preserving
their autonomy.

In [Langerak2023] (right) we formulate

the interaction with the joint

interface as a multi-agent Decison Mating Policy o B
reinforcement learning problem. A
user interacts with a graphic interface, W J_
while an intelligent agent adapts the ‘

interface based on observations of the )
user's actions. In our formulation, a Heter et

user agent mimics a real user and - I
a) (>
learns to interact with an interface via

point-and-click actions. A o —— T T— A
Simultaneously, an interface agent

learns interface adaptations, by observing the user agent’s behavior, to maximize the user
agent’s efficiency. Our work demonstrates how we can learn intelligent cooperative
control strategies, by treating interaction as a multi-agent game.

Learned
Interface Policy

Future Research Agenda

In my future research, I plan to focus on three distinct aspects and opportunities to realize
the vision of human-centric control over intelligent systems.
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Human Sensing & Inference

I believe that the impending transformation of the interface will integrate the world at
large—including the users themselves—into the interface itself. For instance, consider a
scenario in which a robot and a human collaborate to clean an apartment. The user should
not need to explicitly instruct the robot on what to clean; instead, the robot should be
capable of inferring this from the state of the world and the user's actions.

This requires two main components. Firstly, accurate human state estimation is essential.
This includes not only the physical state in the world, which can be captured through
computer vision and other modalities, but also latent states such as expertise, fatigue, and
intent. Secondly, accurate sensing of the world state and reasoning is required. The
system should be aware of its environment and capable of predicting future states from the
current context, such as understanding that an apple will fall if released.

Human Behavioral Models

However, sensing the human state is insufficient. To apply current state estimations to
intelligent control, we need to predict future human—both physical and latent—states.
This requires behavior models that capture the complex dynamics of human behavior.

To solve this problem, we need advances in data-driven Reinforcement Learning, such
as imitation learning (IL) and inverse reinforcement learning (IRL), combined with
existing cognitive models. Reinforcement Learning is uniquely suited, as it can result in
approximate optimal behavior given bounds (cognitive models). If we assume
computational rationality, that is humans act optimal given their constraint resources, and
we have accurate cognitive models then reinforcement learning should convert to
human-like policies . However, RL suffers from an exploration problem. By incorporating
data-driven prior, we can model more complex behaviors. By integrating these three
approaches, I aim to develop methods that approximate human strategies, are
generalizable, and computationally feasible. These models will not only enhance our
understanding of human behavior but also improve how we design interfaces and
interaction paradigms between humans and machines.

Cooperative Control

Finally, we need to integrate the human sensing, inference, and behavioral models into
intelligent control strategies, paving the way for more intuitive and seamless interactions
between humans and machines that respect and enhance human decision-making
processes.

I foresee a future in hierarchical and multi-agent reinforcement learning, where
predictive human models can be efficiently integrated into control strategies. Exactly how
this integration will occur remains an open question. The development of such systems
promises to significantly advance our ability to design intelligent systems that truly
augment human abilities, marking a significant milestone in human-computer interaction.
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